
Colorado State University internship report

In Fort Collins, with Dr Francisco Ortega

Dataset segmentation and gesture recognition based

on recurrent neural networks

March – July 2020

Erwan Le Pluard
erwan@lepluard.fr

Internship supervised by Cédric Buche and the Brest National School of
Engineering (ENIB)

mailto:erwan@lepluard.fr

2

Summary
Acknowledgments ... 3

Introduction... 4

CSU presentation ... 5

Colorado State University.. 5

Department of Computer Science ... 7

NUI Lab .. 8

AI training .. 9

Hands-On Machine Learning ... 9

Machine Learning Fundamentals .. 9

Supervised, unsupervised and semi-supervised Learning... 10

Classification & Regression ... 13

Artificial Neural Networks ... 14

Gesture segmentation project .. 17

Introduction... 17

EASEL ... 18

Own approach ... 19

Choice of dataset ... 21

Skeleton data extraction ... 23

Data smoothing ... 26

Labels extraction ... 29

Samples equalization ... 31

Final system ... 35

Ways of improving .. 40

Visualization software ... 41

Software conception ... 41

Results and interpretations ... 42

Conclusion ... 43

Appendices .. 44

1. Raw data kept columns header construction ... 44

2. Data loading functions .. 46

3. Dataset array creation .. 47

3

Acknowledgments

I would like first of all to thank Dr Francisco Ortega, my internship supervisor, for his
trust, his help and his implication before and along my whole internship whether technically
or socially. He took on his time to know my level and give me required documentation in
order to learn what I needed about artificial intelligence, and until the end of the internship
he helped and kept contact as much as possible during those complicated times of COVID
crisis.

I also thank every members of the NUI Lab for welcoming me so nice and for their
help, especially Dhruva Patil which gave me lots of answers I needed during my work.

I thank the entire staff and structure of the Colorado State University for its hospitality
and the access to those buildings, as well as the Brest National School of Engineering for its
link which made this opportunity possible.

And I would like finally to thanks Cédric Buche for being my school supervisor and
especially for giving me the opportunity to do my internship here at CSU in the United
States, thanks to his contact with the Dr Ortega.

4

Introduction

As part of my schooling that I want to orient towards Information Technology (IT), I
have already completed my technician internship in the research & development
department of a French company (at Micro Module, where I developed an electronic lock
with synchronized access). I enjoyed the experience a lot and I wanted to continue my
discovering of the research environment in a more academic way.

I also wanted this long internship experience to be abroad in order to get out of my
comfort zone, strengthen my oral English skills, and work in a different cultural environment.
I then looked for internship offers in the USA; and I eventually had this opportunity thanks to
Cédric Buche to come with Auguste Cousin, another ENIB student to the Colorado State
University.

After a long process of paperwork and a plane trip, I then joined Francisco Ortega and
the rest of the Natural User Interaction Laboratory (NUI Lab) members for a great
experience in Colorado. As this laboratory of the Computer Science department of CSU is
mainly focused on research about user interaction, gesture recognition tasks represent
therefore a big interest of the lab.

Since algorithms of gesture recognition often require for their training many labelled
gesture videos well isolated, lot of time has to be involved to manually create datasets by
cutting and labelling each gesture in a video. My internship mission was to automate this
process which could represent a huge time saving.

I then developed with Auguste and the help of a NUI Lab member an AI-based
classification algorithm to recognize the frames of a video which could represent a
movement beginning or ending; to finally segment each movement between those frames
and then use a recognition algorithm to identify the gestures.

5

Figure 1, photo took just before the COVID-19 stay-at-home order

CSU presentation

Colorado State University

The Colorado State University is one of the land-grant universities1 founded to respond
to the industrial revolution needs in 1870, by focusing on the teaching of science, military
science, engineering, and agriculture.

From initially an only agricultural college in 1879, it is now a huge university covering
more than 60 academic fields of research with 2,000 faculties in 8 colleges. It has a growing
number of around 34,000 students, and a huge campus to host them.

I was impatient to discover this typical American university in terms of scale compared
to what I’m used to, and I have to admit I wasn’t disappointed on that point. When I first
arrived in the campus I was completely lost.

While used to the ENIB campus and its 3-4 buildings, I discovered at CSU a whole city
in the city. Dozens of buildings (see figure 3). One (or more) for each of the university
research fields, 2 huge stadiums, a student center with many fast foods in it… There is even a
whole pub restaurant with a local brewery in the basement of the Student Center (see figure
2).

I also took a gym membership (that I could only use two weeks before the university
closed because of COVID-19) and the Practice Facility amazed me once again by its huge size,
bigger than any gyms I could see in France, and an incredible amount of equipment.

1 State university of higher education which benefits of the Morrill Acts of 1862 and 1890, initially signed by
Abraham Lincoln to found modern educational institutions by granting land to the states, with precise goals
about modern skills and new technologies.

6

Figure 3, local brewery at Lory Student Center’s Ramskeller Pub

Figure 2, Colorado State University Main Campus map

7

Department of Computer Science

My internship took part in the department of Computer Science. It is a very active
department of CSU engaged in transformative innovation and interdisciplinary research.
Those research areas cover computer networks, data security, software engineering,
bioinformatics, big data, artificial intelligence (AI)…

The department laboratories thus regularly publish valuable research publications
(with the NUI Lab about user interaction for instance), which are for some awarded or
founded by external organisms.

This is where I spent most of my time at CSU. This building counts many well equipped
computers and meeting rooms, as well as desks on which I loved to work in the first part of
my internship with an amazing view in front of the mountains behind the university.

Figure 4, photo of the Computer Science building, source: compsci.colostate.edu

Figure 5, photo of mountains view from the second floor of the Computer Science building

8

NUI Lab

Originally founded by Francisco R. Ortega in January 1015 at Florida International
University, the Natural User Interaction Lab is now a laboratory part of the Department of
Computer Science of the CSU.

It focuses on fields of research about 3D user interfaces. Some examples are gesture
interfaces with gesture recognition and elicitation, multi-modal interaction, or virtual &
augmented reality interfaces. I could for instance test impressive experiences of another NUI
Lab member about virtual avatar assistant with gesture recognition.

Here are some examples of the NUI Lab projects:

- Multi-Modal Gesture Recognition

This project focuses on the research about gesture recognition with speech and
how those data can be combined to improve recognition accuracy2

- Gesture User Preference and Elicitation

The user interactions are not always obvious when it comes to gesture commands.
Multiple gestures or speech commands can be natural for different subjects for
instance to flip a cube. Having a better understanding of average user preferences
and elicitation for gesture interaction is the goal of this project.

2 A predictive model accuracy is the measurement of the difference between its actual output and the
expected results.

Figure 6, NUI Lab banner, source : nuilab.org

9

AI training

Hands-On Machine Learning

When Auguste and I firstly talked with Francisco about our internship project and the
skills that it would imply, it appeared clearly that we would in a first time need just to train
ourselves on machine learning. I did already look into artificial intelligence and machine
learning but only by curiosity and personal interest, never in a practical way or in school at
ENIB, I thus didn’t have the level to begin a project with neural networks goals.

Francisco gave us a book to get start with machine learning in a practical way, the
excellent Hands-On Machine Learning with Scikit-Learn and TensorFlow written by the
French Aurélien Géron (which I still read in English for the vocabulary). It’s a great book to
discover artificial intelligence, machine and deep learning, as it covers the theoretical
notions and concepts of the different types of machine learning systems as well as the
technical aspects through an end-to-end project with Python3.

Machine Learning Fundamentals

To explain my internship work and the use of machine learning, it is necessary to
define it. A good general definition has been given in the early ages of computer science by
Arthur Samuel in a paper published by the IBM journal4:

“field of study that gives computers the ability to learn without being explicitly
programmed.” – Arthur Samuel, 1959

In our time where data are becoming more and more important, bulky and tough to
manually analyze and treat, we need algorithms to do the work more than ever. Machine
Learning is a field of study which responds to those needs by introducing the concept of
computer algorithms which could learn by themselves on given data.

3 Python is a programming language widely used by AI researchers.
4 Source : https://ieeexplore.ieee.org/abstract/document/5389202.

https://ieeexplore.ieee.org/abstract/document/5389202

10

Supervised, unsupervised and semi-supervised Learning

Machine learning (ML) works by setting up a training set of data that you feed into an
algorithm to train it, and get output predictions. In function of the type of supervision given
during training, AI models can be classified into different major categories. Here are the
most used ones.

- Supervised Learning – most common

When the ML program is fed with labeled data – data with the wanted solution
included – the algorithm will try to find a correlation between the inputted data and the
given label, in order to be able to generalize it and predict as well fresh unlabeled data. We
call that kind of training Supervised Learning, and it is the most common as it applies lots of
problems.

For instance, if you want to make a program which identifies on a bird picture whether
it is seagull or not, you will feed the program with hundreds of bird pictures labelled as
“Seagull” or “Not a seagull” for each picture. During his training, the machine learning
algorithm will then try to find a correlation between the inputted pixels and the being-a-
seagull fact to predict it.

Figure 7, diagram about Supervised Machine Learning

11

- Unsupervised Learning

This type of training is unsupervised in the fact that you do not provide labels with the
given input. There are multiple types of unsupervised learning algorithm, used for instance
when you want to group (or cluster) your data by finding connections between them.

For instance, if you are a cinema owner, you have a bunch of data about your
customers and you want to know more about similarities between them, you could feed
them into that kind of algorithm. You could then notice for example that 30% of customers
are men coming for romance movie on week days, while 20% are women coming on week-
ends for action movies.

- Semisupervised Learning

Semisupervised Learning is a compromise between the 2 previous types of learning,
when your ML system tries to group data based on their features, and then needs a user to
label each group.

Good examples of semi-supervised learning algorithms are social network facial
recognition ones, as they try to detect similar faces in your photos grouping them by person,
and asks you the name if unknown.

- Reinforcement Learning

This type of training is also often used as it responds to specific needs. We talk about
Reinforcement Learning when we define different possibilities of action for an algorithm,
and rewards based on rules which will tell whenever the algorithm actions impact positively
or not on a situation. The algorithm will then try during the training to find the best winning
strategy, called policy, based on the rewards it gets while performing possible actions.

Those types of algorithm are for example widely used in video games artificial
intelligences. The training of a chess AI would be for instance to define whenever the game
is won or lost, define what pieces the algorithm can move and in which way, and then let it
play thousands of games against humans/other AIs/itself.

12

Figure 8, diagram about different types of Machine Learning

13

Classification & Regression

As you can see on figure 8, the given example with bird classification is not the only
type of Supervised Learning task. When it comes to output a prediction of a label for an
inputted data, there are two main types of output we could want.

- When we want to classify input between preset categories like for the example of
“Seagull” and “Not a seagull” category; we call it a classification task

- When the seek output is rather a continuous value like if we wanted to predict the
weight of a person based on his height, his age, etc.; we call it a regression task

A classification task will often be simpler (easier to reach a good accuracy) as the
output possibilities are in a limited amount while with a regression task you have an infinite
amount of possible outputs with sometimes very wide value range and diversity.

Some classification algorithms are however based on regression one, Logistic
Regression is for example commonly used to determine the probability of a sample to be
from one category or another.

While learning about Machine Learning and the practical aspects in Python, I for
instance developed a digit classification algorithm based on Logistic Regression model, using
the well-known Mixed National Institute of Standards and Technology (MNIST) dataset5
made by Yann Le Cun for AI learners.

5 Dataset of size-normalized handwritten digits pictures – source: http://yann.lecun.com/exdb/mnist/

Figure 9, diagram illustration of differences between regression and classification tasks

http://yann.lecun.com/exdb/mnist/

14

Once I knew how we could classify the machine learning algorithms, I exercised many
little projects to discover what were their different types by implementing them. I will not go
in details on how the different training and decision algorithms work, but for instance with
the MNIST dataset classification it was a logistic regression used to compute each picture
probability to be one digit or another.

As many of the typical “classic” machine learning algorithms, logistic regression is a
binomial regression model which estimates as best as possible a given mathematical model
by considering every data point.

Artificial Neural Networks

Neural networks on another hand, do not try model a mathematical model but is
instead inspired of the concept of human biological neural system. The structure has much
changed since the first neural networks models, but the idea is still based on neurons
activating in function of their connections to other neurons, with a huge number of
connected neurons to simulate a real decision-making model.

Each neuron has one or more input, usually numbers between 0 and 1, and a linked
output by a specific relation (which can be for instance a linear equation), with associated
tunable weight for each input. During training, the neuron will adjust its inputs weights (as
the human brain does by strengthening synapses) according to the validity of its output
versus the expected one for a considered input.

Each neural network can be composed of two or more neural layers, each neuron able
to be connected to each of the previous layer nodes. The inputs are thus representing the
first layer of the network, the last being the output of the model. The intermediate layers
between those are called the hidden layers.

To classify birds pictures with such a system, we could for example set up a neural
network with a first layer of 256 inputs representing the gray-levels of the pixels from a
16x16 picture ; have a second layer of 20 neurons (arbitrary choice) ; and one output neuron
which would represent from 0 to 1 the probability of the picture to represent a seagull.

During the training, each time we would feed this algorithm with a labeled data, the
neural network would try to predict the output and in case of good result, would strengthen
the neural connections that permitted this result, and vice versa. See Figure 10.

15

We can evaluate the performance of a model while he is training by its penalty loss,
which is a kind of score which can be computed by many different algorithms to estimate
how bad is the model for a single prediction. A perfect model would thus have a loss of 0.

In practice, when it comes to the training of a ML model, a good practice is to split the
dataset in two parts:

- The training set which is used to train the model and adjust the weights of each
neuron connections according to the accuracy of the predictions.

- The validation set which is not fed into the algorithm but rather used to measure
the model accuracy, showing thus the validation loss that is useful to determine if
an algorithm is overfitting6 the training set when it diverges from the training loss.

6 A machine learning algorithm is overfitting when it learns to fit too precisely to the expected predictions on
the training set, in a way that it is not able to generalize its “decision strategy” to new data outside of the
training set. It often happens when the dataset is not big or diverse enough.

Figure 10. Representation of a simple artificial neural network with single output

16

Neural networks with multiple dense layers can be used to model complex problems
and predict labels with good accuracy, but the number of total connections growth
exponentially with the number of layers, increasing thus drastically the needed computing
power and training time.

The number of intermediate layers and their number of composing neurons are
parameters that can be tweaked a lot when looking to improve the model accuracy. Usually
those kinds of parameters that control and impact the learning process are called
hyperparameters. Once a neural network is designed his hyperparameters are usually
modified during the hyperparameter tuning (or optimization) to find the combination
matching the best the expected results.

17

Gesture segmentation project

Introduction

While training myself on machine learning, the original project for my internship was
about gesture recognition in a virtual reality environment. But before I finished my training
part to start the project, the university buildings closed and the NUI Lab as well one week
after, because of the coronavirus pandemic.

Working during COVID-19 was not an easy task, especially on an abroad internship.
Despite the support from Francisco and the meetings we had every week, it was hard to
keep a stable work schedule during a stay-at-home order in a little apartment room when
you cannot really separate work and “free time” space.

But I finally managed to find a rhythm in my everyday routine, and worked efficiently
even if my work schedule was a bit shifted on night schedule as I prefer to work late and get
up late than the opposite. While the “work” part of my internship was thus not so much
affected as well as my training about ML, the rest of my abroad experience has been more
limited by the pandemic outcomes in a kind of frustrating way.

The initial project about gesture recognition in virtual environments was impacted too.
As research in those fields requires corresponding equipment such as virtual reality headset,
the stay-at-home order and the inability to access the lab made my original project
impossible to realize.

Figure 11. Example picture of me working during the stay-at-home order

18

I still wanted to work about machine learning so Francisco then talked about the Easy
Automatic Segmentation Event Labeler (EASEL) project7, a software realized in order to help
to the creation of gestures datasets.

EASEL

EASEL is a computer assisted dataset creation tool. The idea behind this software is to
help users while the creation of a gesture dataset from raw videos, by auto segment and
recognize human actions instead of manually editing the video, splitting the gestures at the
right timestamps, and label them.

EASEL thus pre-segment the videos and tries to recognize each segmented gesture,
and then allows the user to correct the wrong annotations. This tool showed pretty good
results with the gesture recognition: only 32% of labels needed to be corrected manually;
while 72% of the gestures start/end times required adjustments. A better gesture
segmentation would then be a good improvement for the tool.

The auto-segmentation of the gestures is based on the “ACE-PC” technique by Arn et
al.8, which consists in estimating curvature in highs dimensional spaces. Basically, it is like

7 Easy Automatic Segmentation Event Labeler - https://dl.acm.org/doi/10.1145/3172944.3173003

Figure 12, EASEL example screenshot

https://dl.acm.org/doi/10.1145/3172944.3173003

19

looking for acceleration in body joints coordinates to estimate movements start/end. This
technique is convenient in this particular case as it requires no previous training and will only
compute on inputted data.

The body joints coordinates along time are extracted from Kinect skeleton data, which
is very convenient as it avoids computing those coordinates from the RGB video. Kinect data
with depth sensors are also more reliable than a flat RGB video.

For the gesture recognition, EASEL team implemented a version of Dynamic Time
Warping (DTW) which is an algorithm able to measure similarities between to temporal
suites. It also requires no previous training and allows to add and classify new gestures on-
the-fly.

Francisco wanted Auguste and me to continue EASEL work if possible, or start from
scratch another solution with the same goals. I looked into the code, set up the
environment, required libraries to make it compile and eventually ran it. Unfortunately, the
software relied on an old remote database which cannot be accessed anymore.

As reverse-engineer the database structure would have been a time-consuming task as
well as analyze the code to be able to continue the work; we agreed with Francisco that it
would be more interesting and enriching to start from scratch with our own approach.

Own approach

While EASEL relies on non-AI algorithms which require no training, our approach is
based on the idea that a ML algorithm would be able, with enough data diversity in its
training, to generalize on every human subject (based on its skeleton data) and to detect
movement start/end for segmentation, as well as recognizing same segmented gestures.

The EASEL most improvable aspect seemed to be the gesture segmentation so we
decided to focus on that only point first. The final choice has been to set up a recurrent
neural network with a logistic regression which would compute the probability of each
frame – given the coordinates of each body joint – to be a movement start/end or not.

While we would still talk and think together as well as for making the technical
decisions, we then split the work between Auguste and me to begin the same project but
with each of us with our own experience. He would more focus on the recurrent neural
network (RNN) model development while I would rather focus on the data preparation. That
way each of us could study different topics and explain to the other what he learned.

8 Robert Arn, Pradyumna Narayana, Teegan Emerson, Bruce Draper, Michael Kirby, and Chris Peterson. Motion
Segmentation via Generalized Curvatures. Under review in IEEE Transactions on Pattern Analysis and Machine
Intelligence.

20

For the technical aspects, I chose to use Python for the data preparation as well as for
the model development, because it is by far the most used language for this purpose and
has already lots of documentation and libraries available with very useful tools for data
science and machine learning. NumPy and Pandas are two popular libraries I used for the
data transformation and preparation.

We would then have to do data processing and model training on huge datasets which
represent lot of computing power and memory required. To make things work faster and be
able to run our algorithms with no worries about our computer limitations, I installed Python
and a Jupyter Notebook to use it on one of my private dedicated servers in a French
datacenter.

Jupyter Notebook is an open-source software that allows users to edit code online
through the web browser, run it and share its results easily.

We also decided to use TensorFlow for the predictive model development, the most
suited and advanced library for our uses. It is also well designed for multi-processor
computing and well optimized which is an important point when dealing with big datasets of
hundreds of videos.

Figure 15. Python logo Figure 14. NumPy logo Figure 13. Pandas logo

21

Choice of dataset

Once technical aspects defined and working environment set up, I just needed one
more thing to start: a dataset. This choice represents an important decision for the rest of
the project as it will be the raw matter which I will rely on to try to extract valuable data, and
produce a meaningful result.

Given the allotted time and my level in machine learning, it also reasonable to target
too complicated goals like extract body joints from raw RGB video9 instead of Kinect
skeletons, or segment gestures of multiple subjects at a time.

Thus, the videos included in the dataset need to respond to multiple criteria to be
usable in our project:

- Each video must only contain human gestures performed by only one subject with
the least parasitic gestures possible, we would else need to first detect if multiple
gestures are occurring simultaneously, treat each independently…

- The videos have to contain various numbers of gestures of various length for the
model to be able to generalize to any gesture.

- Corresponding body joints coordinates have to be already extracted and given with
videos, saving us lot of times.

- Videos have to be labeled with timestamps of each gesture start/stop in order to
feed them to our model by supervised learning.

9 RGB videos are natural human videos composed by Red-Green-Blue images.

Figure 16. Jupyter Notebook logo Figure 17. TensorFlow logo

22

When I was looking for available gesture datasets, I came across a survey report about
RGB-D-based Action Recognition Datasets10 which includes a lot of pretty complete ones. A
deep analysis and comparison of them is also made which allows to have fast and good
insights on the datasets.

I was thus able to find some good candidates like the UTD-MHAD11, which has a solid
number of different gestures with good quality inertial sensor and depth data, a good
diversity in its subjects… But the problem for this one as well as for many others is that it is a
final reviewed dataset; which means that each gesture has already been segmented and
isolated in independent files without previous and next frames.

Our model is based on RNNs, so it needs the previous frames joints coordinates in
order to tell if a frame is a movement start/end. We thus require continuous unsegmented
gestures for our system to be able to train to segment them.

I then looked to the dataset which had been used by the EASEL, as they had the same
constraints as we had. The dataset they used to test their tool is the EGGNOG12 dataset. This
dataset made under the NUI Lab supervision seemed to be perfectly suited to those needs
and moreover we had access to the original files which include long videos with lots of
continuous gestures.

10 Jing Zhanga, Wanqing Lia, Philip O. Ogunbonaa, Pichao Wanga, and Chang Tanga. RGB-D-based Action
Recognition Datasets: A Survey – https://arxiv.org/abs/1601.05511
11 Chen Chen, Roozbeh Jafari, and Nasser Kehtarnavaz. UTD Multi Modal Action Dataset –
https://personal.utdallas.edu/~kehtar/UTD-MHAD.html
12 Isaac Wang, Mohtadi Ben Fraj, Pradyumna Narayana, Dhruva Patil, Gururaj Mulay,
Rahul Bangar, J. Ross Beveridge, Bruce A. Draper, and Jaime Ruiz. EGGNOG: Elicited Giant Gallery of Naturally
Occurring Gestures Dataset – https://www.cs.colostate.edu/~vision/eggnog/

Figure 18. EGGNOG video sample screenshot

https://arxiv.org/abs/1601.05511
https://personal.utdallas.edu/%7Ekehtar/UTD-MHAD.html
https://www.cs.colostate.edu/%7Evision/eggnog/

23

The EGGNOG dataset includes arounds 24,000 gestures labels across more than 350
videos. The dataset being 21 Gigabytes heavy, it was very convenient to have a dedicated
server on which download and process it.

As you can see on Figure 18 subjects were standing behind a table so every gesture are
upper body ones (mainly with head or arms), but it is a good base to start with. Videos have
been captured with a Kinect which also includes each body joint coordinates through
skeleton data files.

Skeleton data extraction

The first step was thus to extract the Kinect skeleton data for each video in an array,
and removing the unneeded/unwanted data.

As the Kinect sensors do not have a view on the lower body joints, all corresponding
coordinates had to be dropped as well as outliers like some joint orientations. Code available
on Annex 1.

Figure 19. Example of raw Kinect skeleton data

Figure 20. Example of extracted useful skeleton data after unnecessary columns dropping

24

Once skeleton joints extracted and available for analysis, they could be plotted for
visualization. Like every time I have to deal with temporal data, I thought it could only be a
good idea to plot and visualize some example data to get first insights on its nature.

As videos are 30 FPS13, each frame represents roughly a 1/30th of a second. So with the
fact in mind that 90 frames would correspond to 3 seconds of video, we can notice on Figure
19 that coordinates data seem to be well continuous and not very noisy, at least for this
joint.

13 Frames Per Second

Figure 21. Head coordinates over time of a random video

Figure 22. 3D representation of head coordinates over time of a random video

25

But when we take a closer look at each joint coordinate, we can see that some are
much noisier than others, that’s for instance the case of the hand joints (wrist, thumbs...).
You can easily notice the difference in terms of noise for example on the left thumb
coordinates of the same video, see Figure 23 and Figure 24.

I looked at several different random videos and it appeared that some joints were
regularly noisy, which would amplify the difficulty of getting valuable results from those
data. After a discussion with Dhruva who confirmed the potential improvements it could
lead to, I decided to implement a filtering algorithm to remove the noise while keeping the
whole data complexity and its curvature.

Figure 24. Left thumb coordinates over time of a random video

Figure 23. 3D representation of left thumb coordinates over time of a random video

26

Data smoothing

Multiple reliable algorithms exist to filter a noisy signal. They all work by updating each
point location with a new computed one based on the around points locations.

The moving average algorithm is one of the simplest techniques for smoothing signals
in a software, it consists in converting each point value into a new value averaged on n
points around the considered location. That number of points is usually named the filter
width or the window length.

The greater the window length the more intense is the impact of the smoothing on the
data. It has to be long enough to have a meaningful impact and flatten the noise while being
short enough to not flatten the gesture peaks (limit the original information loss).

Another well-known and widely used filter technique is the Savitzky-Golay algorithm. It
is considered as a much better approach with most of signals, including our continuous
gestures ones. Instead of simply averaging points in a window, it performs an estimation of a
polynomial fitting to a set of consecutive data points, and then computes the central point of
the fitted polynomial curve as the new smoothed point. It thus also has a window length
parameter, as well as the polynomial order to use.

Here are two illustrations of those two algorithms on a simple example set of random
points, each picture shows one algorithm updating step that will be repeated for each point.
The window length used for both filters is the 9 shown points, and the polynomial order of
the Savitzky-Golay filter is set to 3.

Figure 25. Representation of a single point update with the moving
average algorithm (red dot is the smoothed value)

27

Depending on the kind of data we are dealing with, the available computing power and
the expected algorithm speed, you might choose one filter type or another. In this context
with the given “shape” of the continuous coordinate curves, it seems clearly that the
Savitzky-Golay filter would be a better approach and would have much more chance to
restore an unnoisy signal. That is therefore the filtering algorithm I used to smooth the data.

In order to choose the two filter parameters (window length and polynomial order), it
is important to keep in mind that they also impact the performance of the algorithm. A good
way to fix those values is to adjust the window length while keeping a low polynomial order,
until the data is smoothed just as much as needed.

After a long process of implementation and parameter tuning to find good ones, here
are the results of the smoothed data with a Savitzky-Golay filter of a 13-points window
length and polynomial order to 2.

Figure 27. Filtered left thumb coordinates over time of a random video

Figure 26. Representation of a single point update with the Savitzky-
Golay algorithm (red dot is the smoothed value)

28

The smoothing filter seems to perform well by reducing in a strong way the useless
complexity of some of the coordinates curvature induced by sensor noise. We can see that
every meaningful peak is conserved as well as the global “path shape”, guarantying a
reduced information loss.

Analyzing the unnoisy body joints is also another way to be sure that this filter keeps
the integrity of data we don’t need to filter. We can thus see that the shown clean head
coordinates in Figure 21 are not very affected by the Savitzky-Golay algorithm, as expected.

Figure 28. 3D representation of filtered left thumb coordinates over
time of a random video

Figure 29. Filtered head coordinates over time of a random video

29

Labels extraction

While the body skeleton coordinates were at this point usable and smoothed, they did
not include the labels needed for the supervised learning. The next thing I did was thus to
iterate over the ~ 24,500 gesture labels from a “Labels.csv” file, and mark the temporal
corresponding skeleton data as movement start/end.

It seems like an easy task at first look, as I had a list of skeleton frames and frames
number corresponding to gestures start/end ; but, after few attempts and unsuccessful
results, I realized that the frame numbers given by the labels file were sometimes out of the
range of the skeleton data list, and they didn’t seem to really match together.

The problem was that the frames numbering from the labels file does not correspond
to the skeleton frames, for instance when the labels file states that there’s a movement in
video A from frame 30 to 54; it can actually correspond to the 34th and 52th frames of the
skeleton data.

To match the labels with the skeleton data, I therefore needed to synchronize them by
their timestamp. Skeleton raw data files include timestamp for each row as you can see on
Figure 17, but the labels file does not.

My first solution was then to compute the labels timestamp based on the video
framerate, as while looking EASEL code it appeared that labelling data were linked to raw
video frames number. All videos being 30 FPS, a simple proportional calculation can give us
in theory each frame corresponding timestamp.

Figure 30. Sample of the labels file

30

But the results appeared inconsistent, and when I deeply analyzed the raw RGB video
frames I realized that I couldn’t rely on the framerate as it was not stable at all, some frames
were skipped, some lasting longer… I talked with Dhruva about this problem as he had work
on the EGGNOG dataset creation, and he talked me about “.frames” files mapping video
frames number and their timestamp, exactly what I needed.

The public EGGNOG repository that I downloaded did not include those files that’s why
I was on the wrong way, so I took them from the original lab server.

At this point I thus just had to match each movement start/end timestamp with the
skeleton frames ones; but as they were not simultaneous I needed to arbitrary define a time
interval around each label timestamp, in which skeleton frames would be marked as
movement start/end frame.

Figure 31. Sample of a random video ".frames" file

Figure 32. Labels and skeleton data matching illustration

31

I tweaked my interval duration until I ended up by just setting it to the length of a
frame period, 1/30th of a second, which leads to between 1 and 2 frames marked for each
label, which seemed satisfying.

The result is about 6% of the frames marked as gesture start/end; by iterating over
~150 files of the 450 total files, because 200 of them are missing the “.frames” file, which
prevents me to map the labels.

Definitions of the functions used to do this operation are available on Annex 2 and
Annex 3. As I also define an arbitrary time interval in which frames will be considered as
movement end ones, it represents a tunable hyperparameter which impacts the output
division of gesture and non-gesture frames.

The beginning of a movement represents something about few hundreds milliseconds,
but it depends on the human subject speed and other factors, that is why I tweaked this
interval to include more than only one frame for each label.

Thus, I do not think that this algorithm is the best way to measure if a frame is a
start/end of a movement or not, but we didn’t have any more information which could let
me do a deeper analysis.

Samples equalization

During the first runs of our segmentation algorithm, we had an unexpected amazing
accuracy of 94% good predictions of our software about each frame label. When looking to
the training and validation loss during training, they seemed to converge which also is a
good point.

Figure 33. Training and validation loss of the model training with
raw data

32

But such a success for a first try? I was very sceptic and my doubts confirmed when I
took a look deeper into the results and the confusion matrix.

The confusion matrix is a 4-number matrix including true/false positives and true/false
negatives. In this case I could see that every frame that was not a movement start/end was
well labeled as “not a gesture frame” (true negatives), but every frame that actually was a
movement start/end one (true positives) was mislabeled also as “not a gesture frame”.

In fact, the algorithm just learned to output “not a gesture frame” for 100% of the
frames, and as we only had 6% gesture frames it could still reach a 94% accuracy.

The first solution to this problem has been to randomly duplicate the gesture
movement frames in order to equalize the division of the whole sample set, thus avoiding
our model to look for a unique answer to output each time.

 We’ve been able to get much more consistent data with this approach by equalizing to
50% of non-gesture data and 50% gesture, but we had to duplicate a lot the few amount of
gestures we had compared to the number of “idle” frames.

Figure 34. Frame labels repartition ("gesture"
representing the movement start/end frames)

33

The fact that this duplicity gets the dataset further from a real-conditions data
representation can be a problem which impacts the performance of the training and thus
the whole system. Such a duplication could for instance leads the model to memorize the
data and thus to overfit its predictions in a way.

Through searches and discussions with Dhruva and Francisco, the way to reduce this
approach bad impact has been to oppositely remove some of the “idle” frames which would
have the same effect on the equalization while having a lot less to duplicate data.

One could consider this technique as a loss of data, but as our model goal is to predict
“gesture frames” more than the opposite, it should not affect the algorithm learning in a
negative way.

The results then obtained on the training and validation loss with equalized samples
fed into the algorithm reached a 39% movement detection accuracy14 and an 84% overall
accuracy15 (accuracies computed by testing the trained model on a test set including around
30,000 unequalized frames).

When at this point I added my smoothing algorithm based on a Savitzky-Golay filter
(see Data smoothing), the performance went down for unknown reasons. See Figure 37.

14 The movement detection accuracy is the number of well detected movement frames divided by the total
number of movement frames.
15 The overall accuracy represents how many good predictions were made by the model in total on the tested
set. In this particular case, this value can be misleading as it is computed on the validation set which contains
lots more “idle frames” than movement ones.

Figure 35. Frame labels repartition after the sample
equalization

34

While I was expecting the data smoothing to simplify the data without losing useful
value, simplifying thus the task for the model to find good correlations and do correct
predictions, it actually decreased in practice the performances of the model. When I asked
Dhruva about this point, he was not able to give me an answer as he’d also expected the
smoothing to increase the system accuracy.

He advised to continue the work on the data and the predictive model as it was an
early stage of it, and to look deeper in the smoothing process later if I had time and this
anomaly still appeared.

Figure 37. Training and validation loss of the model training with
equalized data

Figure 36. Training and validation loss of the model training with
smoothed equalized data

35

Final system

Towards the end of my internship, after Auguste made lots of improvements for the
model based on Dhruva’s advice, we ended up with a well-prepared dataset and a model
which seemed to produce pretty good results.

 The system structure (see Figure 38 on next page) consists in 6 consecutives neural
layers:

- The input layer is made of the 99 body joints coordinates fed into the algorithm. In
fact, as we are using LSTMs16 the input layer is not just one skeleton frame but a
batch of the actual tested frame and the 9 previous ones with their joints
coordinates (not represented on Figure 37 for reasons of simplification).

- A first LSTM layer which takes the inputted batch of frames and outputs a same
shape result to a second LSTM. The use of LSTMs instead of regular neural
networks allows the system to benefit from their internal feedback with memory
which seemed us a good choice because the sequential form our data, every joints
coordinates being the continuation of previous ones. We used LSTMs with 160
hidden nodes (best hyperparameter found during the tuning) and batches of 10
frames.

- The second LSTM output is fed into a classic dense neuronal layer of also 160
neurons.

- A second dense layer takes the output of the previous layer, this one only contains
2 neurons acting as a feature extractor17.

- The final output node is then passed through an argmax function which keeps the
max value of the inputs, and in a softmax activation function, a common way to
return a probability distribution in a classification problem.

The outputted result can then be used as the probability of each frame to be a
movement start/end one, or classified using a probability threshold to consider the frame as
a positive result.

16 Long short-term memory is a type of recurrent neural networks which are neural networks with feedback
connections, able to take sequences of sample instead of one sample at a time with classical neural networks,
enabling memory mechanism very relevant in our case of continuous skeleton coordinates frames.
17 Feature extraction is a way to reduce the dimension of data, it consists in building derived values (called
“features”) intended to reflect the inputted information in a smaller dimension, facilitating the learning and
generalization process.

36

Figure 38. Basic diagram of the final gesture segmentation predictive system

37

Our model shown at first pretty good results, predicting most of the movement frames
with at worst a bit of delay or marking excess (marking more frame as movement one
around the label than expected) which can be a logic result : a movement beginning/ending
does not last exactly one or two frames as labeled (see Movement detection interval).

This comparison between gesture predictions and labels is the one we first looked at,
and it seems to confirm that our model is working as expected. When looking at the training
and validation losses, they also seem to converge together which is usually a sign of a good
generalization ability (see Figure 41).

Figure 39. Example sample of gesture frames predictions for a
random dataset video

Figure 40. Corresponding sample of gesture frames labels

38

Everything seemed to be alright but then I looked into the algorithm which splits the
dataset into validation and training set, and something looked wrong. We suddenly saw that
when Auguste did a modification to this algorithm to limit its computer memory impact
(which was saturated crashing the process) early in the project, he introduced a coding
mistake which led to merging some of the training data in the validation data.

The validation loss is an indicator for the model of being able to generalize and do
good predictions on data out of the training set, the validation set intends to be isolated and
unique in order to evaluate the model on data he could not train with, avoiding
memorization of each training set sample label. This error thus compromised this principle.

When we realized this impactful error, I corrected it by making sure that the validation
set would not contain any video or even any same human subject from the training set,
which intends to avoid model overfitting.

When we then ran a training of the model with the corrected dataset, it appeared that
our results were not as good as expected.

Figure 41. Training and validation loss of final algorithm training with
smoothed data

39

As you can see on Figure 42, the training loss converges to a very low point which is
supposed to be a sign that the algorithm manage to find a good correlation between given
input and expected output. The problem is that the validation loss does not converge
anymore when no sample of the training set is included in the validation one; which means
that the model is overfitting our training data and does not manage very well to generalize
its “decision-making strategy” to detect movement frames with a good accuracy.

On the internship end, time was missing to do so, but I believe that we could have
made some improvements to avoid this problem and reach usable results.

Figure 42. Training and validation loss of final algorithm after validation set
split correction

40

Ways of improving

The final can be improved in many ways as we did not have enough time to explore
every ideas and improvement corrections we thought about. Some of them would consist in:

- Increase the data diversity by generating noised duplicates for instance, increasing
thus the dataset size.

- Expend the dataset by finding a way to generate the “.frames” files which would
allow to add 200+ labeled videos to the dataset.

- Change the labels form with for instance a “movement score” instead of a simple
“movement end” true/false value.

- Differentiate each joint movements by implementing a specific recognition model
for each, and use the EGGNOG included labels descriptions to train each model
with its corresponding movements.

- Do a more precise hyperparameters analysis and tuning, we couldn’t try everything
we had in mind as it demands a lot of computation power and training time when
it comes to heavy layers.

- Preprocess some of the training work by adding new useful considered features,
based on the raw coordinates. For instance, we could compute each body joint
speed/acceleration and add it to the inputs.

- Convert the dataset coordinates and labels to an absolute form which could be
summed with other converted datasets to increase the total size in a significant
way, as increasing the dataset diversity should lead to a more generalizable system
decision strategy.

- Check closer to the misrecognized frames looking for correlations between
outputted errors and inputted data in order to focus on the model flaws and
correct them.

Various improvements – and in particular the fact that there was a mistake in the
training/validation split algorithm which made the model overfitting – were brought to light
by looking at our results through the visualization software that I wrote.

41

Visualization software

Software conception

While working on the model there was several times where we struggled to analyze its
results, it wasn’t very convenient to compare the dataset given labels and our model
predictions in a chart without the video of the corresponding movements.

I thus came up with the idea of a visualization software, to see simultaneously the
videos and the data. I used C++ which is a fast and compiled language very powerful and
friendly when powered by Qt. It lets you quickly implement working User Interfaces (UIs)
and portable softwares, with full access to the Operating System (OS) native libraries.

I realized the interfaces with QML Quick, a feature of Qt that I knew by name and that
I’ve been wanting to try since a few years. It is very convenient way to implement quick and
portable GUIs, and simple of use as it’s more a markup language like HTML-CSS18 than a
classic programming style.

18 Hyper-Text Markup Language (HTML) is a simple web markup language used today for every website
structuring.
Cascade Style Sheets (CSS) is the language used to style (color, positioning…) HTML websites

Figure 43. C++ logo Figure 44. Qt library logo

42

I decided to keep the computation in Python scripts as I already did most of the work
needed during the data preparation. The software would just use those Python scripts to
generate 2 JSON19 files (the EGGNOG labels, and our model predictions) and show them
along the video.

I also added features like speed acceleration/deceleration or frame-by-frame to
explore our results in a more precise way.

Results and interpretations

As we can see on Figure 45 (predictions made on a test video which hasn’t been used
during training, avoiding thus overfitted results), the results are not very accurate and we
get a much more meaningful insight on our model predictions.

I could also spot certain videos with incredibly good results which proven then to be
overfitted; and we’ve been able to significantly improve our predictive model thanks to that
tool.

Another good improvement could be found by adding a visualization of the skeleton
data, like a 3D representation of each joint coordinate according to the current video
location; it could allow to see whenever there are outliers or errors in the data used as input
to our system.

19 JavaScript Object Notation (JSON) is a data format derived from JavaScript

Figure 45. Example screenshot of the visualization software

43

Conclusion

Our whole predictive system needs thus further work to be really usable in a
production environment, but it has good bases to do so. The objective of this internship was
to get into machine learning and learn about artificial intelligence while trying to advance
state-of-the-art in this field of study, and I am very happy with what I accomplished.

I learned a lot about Python especially with ML and data science libraries such as
Pandas, NumPy and Tensorflow. I thus discovered those very useful features and will
probably use them in most of my future Python projects, as well as Qt last versions and QML
Quick for UI design which allows huge time savings.

The lab environment was really stimulating and challenging as I had to work with fields
of study I wasn’t used to but which were also exciting. I’m learned a lot about machine
learning and artificial intelligence overall, and I’m very excited to use those new skills again
on new projects.

It was nice to work in some kind of freedom while still having a trace and advice from
the lab team. I had a great support from Dhruva when it came to Machine Learning and
topics that I didn’t mastered well, and Francisco was also really helpful and careful to
everything that I needed. I thus want to thanks them again and every other member of the
lab for their support and kindness towards me.

44

 Appendices

1. Raw data kept columns header construction

Figure 46. Data header definition, unnecessary columns dropping

45

I firstly computed a header for the data, which includes a title for each column of the
CSV20/TSV21 file. This has been made by extracting the body joints names from a row of a
random skeleton file and use them to title each file column, by executing the following
replacement regex22:

Search:

([A-z]+)\s*\w+\s+[\-0-9\.]+\s+[\-0-9\.]+\s+[\-0-9\.]+\s+[\-0-9\.]+\s+[\-0-
9\.]+\s+[\-0-9\.]+\s+[\-0-9\.]+\s+

Replace:

$1\t$1Status\t$1LocX\t$1LocY\t$1LocZ\t$1OrW\t$1OrX\t$1OrY\t$1OrZ\t

This header allows me to then create a Python dictionary of those columns, keeping
their indexes for further use and removing the columns I don’t need/want. Those columns
are then used by the skeleton-loading function (see Figure 34) to skip the unwanted ones.

20 Comma Separated Values
21 Tab Separated Values
22 A regular expression or regex is a character sequence which defines a search pattern, usually used by string-
search algorithms for operations such as “find” or “find and replace”

Figure 47. Sample of columns from 7 to 18 from a random skeleton file

Figure 48. Example usage of the computed columns

46

2. Data loading functions

I use the Python library Pandas to extract the data from the CSV files, and keep only
the usable data columns by passing the previous computed columns header. The timestamp
files (“.frames” files) are clean and do not need such a filtering, so we can load and return
them directly.

The third function is used during the dataset creation (see Figure 35) to make testing
functions used to map each skeleton frame to its label “Start/end frame” or “Not a start/end
frame”.

Figure 49. Data extracting functions definition

47

3. Dataset array creation

This is the main function which uses the previous ones to return the dataset in a usable
Python dictionary form. This function iterates over the labels file and:

- retains in an array “eFrames” each movement end frame number of a video (and
not the movements start, as each movement end corresponds to the next
movement start so I avoid redundancy)

- gets the corresponding timestamps (which can be in “_RGB.frames” or
“_Video.frames” files), return an error if not found to continue to next file

- creates tests functions to map the frames to their corresponding label using the
given time interval parameter used to control how many frames are marked by
each label

Figure 50. Dataset array creation function definition

48

- stores the results in an array of the frames and their corresponding labels, indexed
in the data dictionary by current the file name

- empty its movements end list “eFrames” and continues to iterate on the next
labels to get next video movements

While developing this algorithm, I discovered the map function of Python that lets you
run a function on a whole list by replacing each value by the results of the passed function
with the value as a parameter.

It is a very useful feature which can be used in many ways for data filtering or
transformation, but I use it here (in a convoluted way maybe) to test each skeleton frame
with a different function defined on-the-fly with the “eFrames” movement end frame list.

	Acknowledgments
	Introduction
	CSU presentation
	Colorado State University
	Department of Computer Science
	NUI Lab

	AI training
	Hands-On Machine Learning
	Machine Learning Fundamentals
	Supervised, unsupervised and semi-supervised Learning
	Classification & Regression
	Artificial Neural Networks

	Gesture segmentation project
	Introduction
	EASEL
	Own approach
	Choice of dataset
	Skeleton data extraction
	Data smoothing
	Labels extraction
	Samples equalization
	Final system
	Ways of improving

	Visualization software
	Software conception
	Results and interpretations

	Conclusion
	Appendices
	1. Raw data kept columns header construction
	2. Data loading functions
	3. Dataset array creation

