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Introduction 

As part of my schooling that I want to orient towards Information Technology (IT), I 
have already completed my technician internship in the research & development 
department of a French company (at Micro Module, where I developed an electronic lock 
with synchronized access). I enjoyed the experience a lot and I wanted to continue my 
discovering of the research environment in a more academic way. 

I also wanted this long internship experience to be abroad in order to get out of my 
comfort zone, strengthen my oral English skills, and work in a different cultural environment. 
I then looked for internship offers in the USA; and I eventually had this opportunity thanks to 
Cédric Buche to come with Auguste Cousin, another ENIB student to the Colorado State 
University. 

After a long process of paperwork and a plane trip, I then joined Francisco Ortega and 
the rest of the Natural User Interaction Laboratory (NUI Lab) members for a great 
experience in Colorado. As this laboratory of the Computer Science department of CSU is 
mainly focused on research about user interaction, gesture recognition tasks represent 
therefore a big interest of the lab. 

Since algorithms of gesture recognition often require for their training many labelled 
gesture videos well isolated, lot of time has to be involved to manually create datasets by 
cutting and labelling each gesture in a video. My internship mission was to automate this 
process which could represent a huge time saving. 

I then developed with Auguste and the help of a NUI Lab member an AI-based 
classification algorithm to recognize the frames of a video which could represent a 
movement beginning or ending; to finally segment each movement between those frames 
and then use a recognition algorithm to identify the gestures. 
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Figure 1, photo took just before the COVID-19 stay-at-home order 

CSU presentation 

Colorado State University 

The Colorado State University is one of the land-grant universities1 founded to respond 
to the industrial revolution needs in 1870, by focusing on the teaching of science, military 
science, engineering, and agriculture.  

From initially an only agricultural college in 1879, it is now a huge university covering 
more than 60 academic fields of research with 2,000 faculties in 8 colleges. It has a growing 
number of around 34,000 students, and a huge campus to host them. 

 

 

 

 

 

 

 

 

 

I was impatient to discover this typical American university in terms of scale compared 
to what I’m used to, and I have to admit I wasn’t disappointed on that point. When I first 
arrived in the campus I was completely lost.  

While used to the ENIB campus and its 3-4 buildings, I discovered at CSU a whole city 
in the city. Dozens of buildings (see figure 3). One (or more) for each of the university 
research fields, 2 huge stadiums, a student center with many fast foods in it… There is even a 
whole pub restaurant with a local brewery in the basement of the Student Center (see figure 
2). 

I also took a gym membership (that I could only use two weeks before the university 
closed because of COVID-19) and the Practice Facility amazed me once again by its huge size, 
bigger than any gyms I could see in France, and an incredible amount of equipment. 

 
1 State university of higher education which benefits of the Morrill Acts of 1862 and 1890, initially signed by 
Abraham Lincoln to found modern educational institutions by granting land to the states, with precise goals 
about modern skills and new technologies. 
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Figure 3, local brewery at Lory Student Center’s Ramskeller Pub 

Figure 2, Colorado State University Main Campus map 



 
7  

 

Department of Computer Science 

My internship took part in the department of Computer Science. It is a very active 
department of CSU engaged in transformative innovation and interdisciplinary research. 
Those research areas cover computer networks, data security, software engineering, 
bioinformatics, big data, artificial intelligence (AI)… 

The department laboratories thus regularly publish valuable research publications 
(with the NUI Lab about user interaction for instance), which are for some awarded or 
founded by external organisms. 

 

This is where I spent most of my time at CSU. This building counts many well equipped 
computers and meeting rooms, as well as desks on which I loved to work in the first part of 
my internship with an amazing view in front of the mountains behind the university. 

 

Figure 4, photo of the Computer Science building, source: compsci.colostate.edu 

Figure 5, photo of mountains view from the second floor of the Computer Science building 
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NUI Lab 

Originally founded by Francisco R. Ortega in January 1015 at Florida International 
University, the Natural User Interaction Lab is now a laboratory part of the Department of 
Computer Science of the CSU.  

It focuses on fields of research about 3D user interfaces. Some examples are gesture 
interfaces with gesture recognition and elicitation, multi-modal interaction, or virtual & 
augmented reality interfaces. I could for instance test impressive experiences of another NUI 
Lab member about virtual avatar assistant with gesture recognition. 

 

 

Here are some examples of the NUI Lab projects: 

- Multi-Modal Gesture Recognition 

This project focuses on the research about gesture recognition with speech and 
how those data can be combined to improve recognition accuracy2 

- Gesture User Preference and Elicitation 

The user interactions are not always obvious when it comes to gesture commands. 
Multiple gestures or speech commands can be natural for different subjects for 
instance to flip a cube. Having a better understanding of average user preferences 
and elicitation for gesture interaction is the goal of this project. 

 
2 A predictive model accuracy is the measurement of the difference between its actual output and the 
expected results. 

Figure 6, NUI Lab banner, source : nuilab.org 
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AI training 

 

Hands-On Machine Learning 

When Auguste and I firstly talked with Francisco about our internship project and the 
skills that it would imply, it appeared clearly that we would in a first time need just to train 
ourselves on machine learning. I did already look into artificial intelligence and machine 
learning but only by curiosity and personal interest, never in a practical way or in school at 
ENIB, I thus didn’t have the level to begin a project with neural networks goals.  

Francisco gave us a book to get start with machine learning in a practical way, the 
excellent Hands-On Machine Learning with Scikit-Learn and TensorFlow written by the 
French Aurélien Géron (which I still read in English for the vocabulary). It’s a great book to 
discover artificial intelligence, machine and deep learning, as it covers the theoretical 
notions and concepts of the different types of machine learning systems as well as the 
technical aspects through an end-to-end project with Python3. 

 

 

Machine Learning Fundamentals 

To explain my internship work and the use of machine learning, it is necessary to 
define it. A good general definition has been given in the early ages of computer science by 
Arthur Samuel in a paper published by the IBM journal4: 

 

“field of study that gives computers the ability to learn without being explicitly 
programmed.” – Arthur Samuel, 1959 

 

In our time where data are becoming more and more important, bulky and tough to 
manually analyze and treat, we need algorithms to do the work more than ever. Machine 
Learning is a field of study which responds to those needs by introducing the concept of 
computer algorithms which could learn by themselves on given data. 

 

 
3 Python is a programming language widely used by AI researchers. 
4 Source : https://ieeexplore.ieee.org/abstract/document/5389202. 

https://ieeexplore.ieee.org/abstract/document/5389202
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Supervised, unsupervised and semi-supervised Learning 

Machine learning (ML) works by setting up a training set of data that you feed into an 
algorithm to train it, and get output predictions. In function of the type of supervision given 
during training, AI models can be classified into different major categories. Here are the 
most used ones. 

- Supervised Learning – most common 

When the ML program is fed with labeled data – data with the wanted solution 
included – the algorithm will try to find a correlation between the inputted data and the 
given label, in order to be able to generalize it and predict as well fresh unlabeled data. We 
call that kind of training Supervised Learning, and it is the most common as it applies lots of 
problems.  

For instance, if you want to make a program which identifies on a bird picture whether 
it is seagull or not, you will feed the program with hundreds of bird pictures labelled as 
“Seagull” or “Not a seagull” for each picture. During his training, the machine learning 
algorithm will then try to find a correlation between the inputted pixels and the being-a-
seagull fact to predict it. 

 

 

 

 

Figure 7, diagram about Supervised Machine Learning 



 
11  

 

- Unsupervised Learning  

This type of training is unsupervised in the fact that you do not provide labels with the 
given input.  There are multiple types of unsupervised learning algorithm, used for instance 
when you want to group (or cluster) your data by finding connections between them. 

For instance, if you are a cinema owner, you have a bunch of data about your 
customers and you want to know more about similarities between them, you could feed 
them into that kind of algorithm. You could then notice for example that 30% of customers 
are men coming for romance movie on week days, while 20% are women coming on week-
ends for action movies. 

- Semisupervised Learning 

Semisupervised Learning is a compromise between the 2 previous types of learning, 
when your ML system tries to group data based on their features, and then needs a user to 
label each group. 

Good examples of semi-supervised learning algorithms are social network facial 
recognition ones, as they try to detect similar faces in your photos grouping them by person, 
and asks you the name if unknown. 

- Reinforcement Learning 

This type of training is also often used as it responds to specific needs. We talk about 
Reinforcement Learning when we define different possibilities of action for an algorithm, 
and rewards based on rules which will tell whenever the algorithm actions impact positively 
or not on a situation. The algorithm will then try during the training to find the best winning 
strategy, called policy, based on the rewards it gets while performing possible actions. 

Those types of algorithm are for example widely used in video games artificial 
intelligences. The training of a chess AI would be for instance to define whenever the game 
is won or lost, define what pieces the algorithm can move and in which way, and then let it 
play thousands of games against humans/other AIs/itself. 
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Figure 8, diagram about different types of Machine Learning 
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Classification & Regression 

As you can see on figure 8, the given example with bird classification is not the only 
type of Supervised Learning task. When it comes to output a prediction of a label for an 
inputted data, there are two main types of output we could want.  

- When we want to classify input between preset categories like for the example of 
“Seagull” and “Not a seagull” category; we call it a classification task 

- When the seek output is rather a continuous value like if we wanted to predict the 
weight of a person based on his height, his age, etc.; we call it a regression task 

 

 

A classification task will often be simpler (easier to reach a good accuracy) as the 
output possibilities are in a limited amount while with a regression task you have an infinite 
amount of possible outputs with sometimes very wide value range and diversity. 

Some classification algorithms are however based on regression one, Logistic 
Regression is for example commonly used to determine the probability of a sample to be 
from one category or another. 

While learning about Machine Learning and the practical aspects in Python, I for 
instance developed a digit classification algorithm based on Logistic Regression model, using 
the well-known Mixed National Institute of Standards and Technology (MNIST) dataset5 
made by Yann Le Cun for AI learners.  

 
5 Dataset of size-normalized handwritten digits pictures – source: http://yann.lecun.com/exdb/mnist/ 

Figure 9, diagram illustration of differences between regression and classification tasks 

http://yann.lecun.com/exdb/mnist/
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Once I knew how we could classify the machine learning algorithms, I exercised many 
little projects to discover what were their different types by implementing them. I will not go 
in details on how the different training and decision algorithms work, but for instance with 
the MNIST dataset classification it was a logistic regression used to compute each picture 
probability to be one digit or another.  

As many of the typical “classic” machine learning algorithms, logistic regression is a 
binomial regression model which estimates as best as possible a given mathematical model 
by considering every data point. 

 

 

Artificial Neural Networks 

Neural networks on another hand, do not try model a mathematical model but is 
instead inspired of the concept of human biological neural system. The structure has much 
changed since the first neural networks models, but the idea is still based on neurons 
activating in function of their connections to other neurons, with a huge number of 
connected neurons to simulate a real decision-making model.  

Each neuron has one or more input, usually numbers between 0 and 1, and a linked 
output by a specific relation (which can be for instance a linear equation), with associated 
tunable weight for each input. During training, the neuron will adjust its inputs weights (as 
the human brain does by strengthening synapses) according to the validity of its output 
versus the expected one for a considered input. 

Each neural network can be composed of two or more neural layers, each neuron able 
to be connected to each of the previous layer nodes. The inputs are thus representing the 
first layer of the network, the last being the output of the model. The intermediate layers 
between those are called the hidden layers. 

To classify birds pictures with such a system, we could for example set up a neural 
network with a first layer of 256 inputs representing the gray-levels of the pixels from a 
16x16 picture ; have a second layer of 20 neurons (arbitrary choice) ; and one output neuron 
which would represent from 0 to 1 the probability of the picture to represent a seagull. 

During the training, each time we would feed this algorithm with a labeled data, the 
neural network would try to predict the output and in case of good result, would strengthen 
the neural connections that permitted this result, and vice versa. See Figure 10. 
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We can evaluate the performance of a model while he is training by its penalty loss, 
which is a kind of score which can be computed by many different algorithms to estimate 
how bad is the model for a single prediction. A perfect model would thus have a loss of 0. 

In practice, when it comes to the training of a ML model, a good practice is to split the 
dataset in two parts: 

- The training set which is used to train the model and adjust the weights of each 
neuron connections according to the accuracy of the predictions. 

- The validation set which is not fed into the algorithm but rather used to measure 
the model accuracy, showing thus the validation loss that is useful to determine if 
an algorithm is overfitting6 the training set when it diverges from the training loss. 

 
6 A machine learning algorithm is overfitting when it learns to fit too precisely to the expected predictions on 
the training set, in a way that it is not able to generalize its “decision strategy” to new data outside of the 
training set. It often happens when the dataset is not big or diverse enough. 

Figure 10. Representation of a simple artificial neural network with single output 
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Neural networks with multiple dense layers can be used to model complex problems 
and predict labels with good accuracy, but the number of total connections growth 
exponentially with the number of layers, increasing thus drastically the needed computing 
power and training time. 

The number of intermediate layers and their number of composing neurons are 
parameters that can be tweaked a lot when looking to improve the model accuracy. Usually 
those kinds of parameters that control and impact the learning process are called 
hyperparameters. Once a neural network is designed his hyperparameters are usually 
modified during the hyperparameter tuning (or optimization) to find the combination 
matching the best the expected results. 
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Gesture segmentation project 

Introduction 

While training myself on machine learning, the original project for my internship was 
about gesture recognition in a virtual reality environment. But before I finished my training 
part to start the project, the university buildings closed and the NUI Lab as well one week 
after, because of the coronavirus pandemic. 

Working during COVID-19 was not an easy task, especially on an abroad internship. 
Despite the support from Francisco and the meetings we had every week, it was hard to 
keep a stable work schedule during a stay-at-home order in a little apartment room when 
you cannot really separate work and “free time” space. 

 

 

But I finally managed to find a rhythm in my everyday routine, and worked efficiently 
even if my work schedule was a bit shifted on night schedule as I prefer to work late and get 
up late than the opposite. While the “work” part of my internship was thus not so much 
affected as well as my training about ML, the rest of my abroad experience has been more 
limited by the pandemic outcomes in a kind of frustrating way. 

The initial project about gesture recognition in virtual environments was impacted too. 
As research in those fields requires corresponding equipment such as virtual reality headset, 
the stay-at-home order and the inability to access the lab made my original project 
impossible to realize.  

Figure 11. Example picture of me working during the stay-at-home order 
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I still wanted to work about machine learning so Francisco then talked about the Easy 
Automatic Segmentation Event Labeler (EASEL) project7, a software realized in order to help 
to the creation of gestures datasets. 

 

 

EASEL 

EASEL is a computer assisted dataset creation tool. The idea behind this software is to 
help users while the creation of a gesture dataset from raw videos, by auto segment and 
recognize human actions instead of manually editing the video, splitting the gestures at the 
right timestamps, and label them. 

EASEL thus pre-segment the videos and tries to recognize each segmented gesture, 
and then allows the user to correct the wrong annotations. This tool showed pretty good 
results with the gesture recognition: only 32% of labels needed to be corrected manually; 
while 72% of the gestures start/end times required adjustments. A better gesture 
segmentation would then be a good improvement for the tool. 

The auto-segmentation of the gestures is based on the “ACE-PC” technique by Arn et 
al.8, which consists in estimating curvature in highs dimensional spaces. Basically, it is like 

 
7 Easy Automatic Segmentation Event Labeler - https://dl.acm.org/doi/10.1145/3172944.3173003 

Figure 12, EASEL example screenshot 

https://dl.acm.org/doi/10.1145/3172944.3173003
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looking for acceleration in body joints coordinates to estimate movements start/end. This 
technique is convenient in this particular case as it requires no previous training and will only 
compute on inputted data. 

The body joints coordinates along time are extracted from Kinect skeleton data, which 
is very convenient as it avoids computing those coordinates from the RGB video. Kinect data 
with depth sensors are also more reliable than a flat RGB video. 

For the gesture recognition, EASEL team implemented a version of Dynamic Time 
Warping (DTW) which is an algorithm able to measure similarities between to temporal 
suites. It also requires no previous training and allows to add and classify new gestures on-
the-fly. 

Francisco wanted Auguste and me to continue EASEL work if possible, or start from 
scratch another solution with the same goals. I looked into the code, set up the 
environment, required libraries to make it compile and eventually ran it. Unfortunately, the 
software relied on an old remote database which cannot be accessed anymore. 

As reverse-engineer the database structure would have been a time-consuming task as 
well as analyze the code to be able to continue the work; we agreed with Francisco that it 
would be more interesting and enriching to start from scratch with our own approach. 

 

Own approach 

While EASEL relies on non-AI algorithms which require no training, our approach is 
based on the idea that a ML algorithm would be able, with enough data diversity in its 
training, to generalize on every human subject (based on its skeleton data) and to detect 
movement start/end for segmentation, as well as recognizing same segmented gestures. 

The EASEL most improvable aspect seemed to be the gesture segmentation so we 
decided to focus on that only point first. The final choice has been to set up a recurrent 
neural network with a logistic regression which would compute the probability of each 
frame – given the coordinates of each body joint – to be a movement start/end or not.  

While we would still talk and think together as well as for making the technical 
decisions, we then split the work between Auguste and me to begin the same project but 
with each of us with our own experience. He would more focus on the recurrent neural 
network (RNN) model development while I would rather focus on the data preparation. That 
way each of us could study different topics and explain to the other what he learned. 

 
8 Robert Arn, Pradyumna Narayana, Teegan Emerson, Bruce Draper, Michael Kirby, and Chris Peterson. Motion 
Segmentation via Generalized Curvatures. Under review in IEEE Transactions on Pattern Analysis and Machine 
Intelligence. 
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For the technical aspects, I chose to use Python for the data preparation as well as for 
the model development, because it is by far the most used language for this purpose and 
has already lots of documentation and libraries available with very useful tools for data 
science and machine learning. NumPy and Pandas are two popular libraries I used for the 
data transformation and preparation. 

We would then have to do data processing and model training on huge datasets which 
represent lot of computing power and memory required. To make things work faster and be 
able to run our algorithms with no worries about our computer limitations, I installed Python 
and a Jupyter Notebook to use it on one of my private dedicated servers in a French 
datacenter.  

Jupyter Notebook is an open-source software that allows users to edit code online 
through the web browser, run it and share its results easily. 

We also decided to use TensorFlow for the predictive model development, the most 
suited and advanced library for our uses. It is also well designed for multi-processor 
computing and well optimized which is an important point when dealing with big datasets of 
hundreds of videos. 

 

  

Figure 15. Python logo Figure 14. NumPy logo Figure 13. Pandas logo 



 
21  

 

 

 

Choice of dataset 

Once technical aspects defined and working environment set up, I just needed one 
more thing to start: a dataset. This choice represents an important decision for the rest of 
the project as it will be the raw matter which I will rely on to try to extract valuable data, and 
produce a meaningful result.  

Given the allotted time and my level in machine learning, it also reasonable to target 
too complicated goals like extract body joints from raw RGB video9 instead of Kinect 
skeletons, or segment gestures of multiple subjects at a time. 

Thus, the videos included in the dataset need to respond to multiple criteria to be 
usable in our project: 

- Each video must only contain human gestures performed by only one subject with 
the least parasitic gestures possible, we would else need to first detect if multiple 
gestures are occurring simultaneously, treat each independently…  

- The videos have to contain various numbers of gestures of various length for the 
model to be able to generalize to any gesture. 

- Corresponding body joints coordinates have to be already extracted and given with 
videos, saving us lot of times. 

- Videos have to be labeled with timestamps of each gesture start/stop in order to 
feed them to our model by supervised learning. 

 
9 RGB videos are natural human videos composed by Red-Green-Blue images. 

Figure 16. Jupyter Notebook logo Figure 17. TensorFlow logo 
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When I was looking for available gesture datasets, I came across a survey report about 
RGB-D-based Action Recognition Datasets10 which includes a lot of pretty complete ones. A 
deep analysis and comparison of them is also made which allows to have fast and good 
insights on the datasets.  

I was thus able to find some good candidates like the UTD-MHAD11, which has a solid 
number of different gestures with good quality inertial sensor and depth data, a good 
diversity in its subjects… But the problem for this one as well as for many others is that it is a 
final reviewed dataset; which means that each gesture has already been segmented and 
isolated in independent files without previous and next frames. 

Our model is based on RNNs, so it needs the previous frames joints coordinates in 
order to tell if a frame is a movement start/end. We thus require continuous unsegmented 
gestures for our system to be able to train to segment them. 

I then looked to the dataset which had been used by the EASEL, as they had the same 
constraints as we had. The dataset they used to test their tool is the EGGNOG12 dataset. This 
dataset made under the NUI Lab supervision seemed to be perfectly suited to those needs 
and moreover we had access to the original files which include long videos with lots of 
continuous gestures. 

 
10 Jing Zhanga, Wanqing Lia, Philip O. Ogunbonaa, Pichao Wanga, and Chang Tanga. RGB-D-based Action 
Recognition Datasets: A Survey – https://arxiv.org/abs/1601.05511 
11 Chen Chen, Roozbeh Jafari, and Nasser Kehtarnavaz. UTD Multi Modal Action Dataset – 
https://personal.utdallas.edu/~kehtar/UTD-MHAD.html 
12 Isaac Wang, Mohtadi Ben Fraj, Pradyumna Narayana, Dhruva Patil, Gururaj Mulay, 
Rahul Bangar, J. Ross Beveridge, Bruce A. Draper, and Jaime Ruiz. EGGNOG: Elicited Giant Gallery of Naturally 
Occurring Gestures Dataset – https://www.cs.colostate.edu/~vision/eggnog/ 

Figure 18. EGGNOG video sample screenshot 

https://arxiv.org/abs/1601.05511
https://personal.utdallas.edu/%7Ekehtar/UTD-MHAD.html
https://www.cs.colostate.edu/%7Evision/eggnog/
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The EGGNOG dataset includes arounds 24,000 gestures labels across more than 350 
videos. The dataset being 21 Gigabytes heavy, it was very convenient to have a dedicated 
server on which download and process it. 

As you can see on Figure 18 subjects were standing behind a table so every gesture are 
upper body ones (mainly with head or arms), but it is a good base to start with. Videos have 
been captured with a Kinect which also includes each body joint coordinates through 
skeleton data files. 

Skeleton data extraction 

The first step was thus to extract the Kinect skeleton data for each video in an array, 
and removing the unneeded/unwanted data. 

As the Kinect sensors do not have a view on the lower body joints, all corresponding 
coordinates had to be dropped as well as outliers like some joint orientations. Code available 
on Annex 1. 

 

 

 

Figure 19. Example of raw Kinect skeleton data 

Figure 20. Example of extracted useful skeleton data after unnecessary columns dropping 
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Once skeleton joints extracted and available for analysis, they could be plotted for 
visualization. Like every time I have to deal with temporal data, I thought it could only be a 
good idea to plot and visualize some example data to get first insights on its nature. 

 

As videos are 30 FPS13, each frame represents roughly a 1/30th of a second. So with the 
fact in mind that 90 frames would correspond to 3 seconds of video, we can notice on Figure 
19 that coordinates data seem to be well continuous and not very noisy, at least for this 
joint. 

 
13 Frames Per Second 

Figure 21. Head coordinates over time of a random video 

Figure 22. 3D representation of head coordinates over time of a random video 
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But when we take a closer look at each joint coordinate, we can see that some are 
much noisier than others, that’s for instance the case of the hand joints (wrist, thumbs...). 
You can easily notice the difference in terms of noise for example on the left thumb 
coordinates of the same video, see Figure 23 and Figure 24. 

  

I looked at several different random videos and it appeared that some joints were 
regularly noisy, which would amplify the difficulty of getting valuable results from those 
data. After a discussion with Dhruva who confirmed the potential improvements it could 
lead to, I decided to implement a filtering algorithm to remove the noise while keeping the 
whole data complexity and its curvature. 

 

Figure 24. Left thumb coordinates over time of a random video 

Figure 23. 3D representation of left thumb coordinates over time of a random video 
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Data smoothing 

Multiple reliable algorithms exist to filter a noisy signal. They all work by updating each 
point location with a new computed one based on the around points locations. 

The moving average algorithm is one of the simplest techniques for smoothing signals 
in a software, it consists in converting each point value into a new value averaged on n 
points around the considered location. That number of points is usually named the filter 
width or the window length.  

The greater the window length the more intense is the impact of the smoothing on the 
data. It has to be long enough to have a meaningful impact and flatten the noise while being 
short enough to not flatten the gesture peaks (limit the original information loss). 

Another well-known and widely used filter technique is the Savitzky-Golay algorithm. It 
is considered as a much better approach with most of signals, including our continuous 
gestures ones. Instead of simply averaging points in a window, it performs an estimation of a 
polynomial fitting to a set of consecutive data points, and then computes the central point of 
the fitted polynomial curve as the new smoothed point. It thus also has a window length 
parameter, as well as the polynomial order to use. 

Here are two illustrations of those two algorithms on a simple example set of random 
points, each picture shows one algorithm updating step that will be repeated for each point. 
The window length used for both filters is the 9 shown points, and the polynomial order of 
the Savitzky-Golay filter is set to 3. 

 

Figure 25. Representation of a single point update with the moving 
average algorithm (red dot is the smoothed value) 
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Depending on the kind of data we are dealing with, the available computing power and 
the expected algorithm speed, you might choose one filter type or another. In this context 
with the given “shape” of the continuous coordinate curves, it seems clearly that the 
Savitzky-Golay filter would be a better approach and would have much more chance to 
restore an unnoisy signal. That is therefore the filtering algorithm I used to smooth the data. 

In order to choose the two filter parameters (window length and polynomial order), it 
is important to keep in mind that they also impact the performance of the algorithm. A good 
way to fix those values is to adjust the window length while keeping a low polynomial order, 
until the data is smoothed just as much as needed.  

After a long process of implementation and parameter tuning to find good ones, here 
are the results of the smoothed data with a Savitzky-Golay filter of a 13-points window 
length and polynomial order to 2. 

Figure 27. Filtered left thumb coordinates over time of a random video 

Figure 26. Representation of a single point update with the Savitzky-
Golay algorithm (red dot is the smoothed value) 
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The smoothing filter seems to perform well by reducing in a strong way the useless 
complexity of some of the coordinates curvature induced by sensor noise. We can see that 
every meaningful peak is conserved as well as the global “path shape”, guarantying a 
reduced information loss.  

Analyzing the unnoisy body joints is also another way to be sure that this filter keeps 
the integrity of data we don’t need to filter. We can thus see that the shown clean head 
coordinates in Figure 21 are not very affected by the Savitzky-Golay algorithm, as expected. 

 

Figure 28. 3D representation of filtered left thumb coordinates over 
time of a random video 

Figure 29. Filtered head coordinates over time of a random video 
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Labels extraction 

While the body skeleton coordinates were at this point usable and smoothed, they did 
not include the labels needed for the supervised learning. The next thing I did was thus to 
iterate over the ~ 24,500 gesture labels from a “Labels.csv” file, and mark the temporal 
corresponding skeleton data as movement start/end. 

 

 

It seems like an easy task at first look, as I had a list of skeleton frames and frames 
number corresponding to gestures start/end ; but, after few attempts and unsuccessful 
results, I realized that the frame numbers given by the labels file were sometimes out of the 
range of the skeleton data list, and they didn’t seem to really match together. 

The problem was that the frames numbering from the labels file does not correspond 
to the skeleton frames, for instance when the labels file states that there’s a movement in 
video A from frame 30 to 54; it can actually correspond to the 34th and 52th frames of the 
skeleton data. 

To match the labels with the skeleton data, I therefore needed to synchronize them by 
their timestamp. Skeleton raw data files include timestamp for each row as you can see on 
Figure 17, but the labels file does not.  

My first solution was then to compute the labels timestamp based on the video 
framerate, as while looking EASEL code it appeared that labelling data were linked to raw 
video frames number. All videos being 30 FPS, a simple proportional calculation can give us 
in theory each frame corresponding timestamp. 

 

Figure 30. Sample of the labels file 
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But the results appeared inconsistent, and when I deeply analyzed the raw RGB video 
frames I realized that I couldn’t rely on the framerate as it was not stable at all, some frames 
were skipped, some lasting longer… I talked with Dhruva about this problem as he had work 
on the EGGNOG dataset creation, and he talked me about “.frames” files mapping video 
frames number and their timestamp, exactly what I needed. 

The public EGGNOG repository that I downloaded did not include those files that’s why 
I was on the wrong way, so I took them from the original lab server. 

At this point I thus just had to match each movement start/end timestamp with the 
skeleton frames ones; but as they were not simultaneous I needed to arbitrary define a time 
interval around each label timestamp, in which skeleton frames would be marked as 
movement start/end frame. 

 

Figure 31. Sample of a random video ".frames" file 

Figure 32. Labels and skeleton data matching illustration 
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I tweaked my interval duration until I ended up by just setting it to the length of a 
frame period, 1/30th of a second, which leads to between 1 and 2 frames marked for each 
label, which seemed satisfying. 

The result is about 6% of the frames marked as gesture start/end; by iterating over 
~150 files of the 450 total files, because 200 of them are missing the “.frames” file, which 
prevents me to map the labels. 

Definitions of the functions used to do this operation are available on Annex 2 and 
Annex 3. As I also define an arbitrary time interval in which frames will be considered as 
movement end ones, it represents a tunable hyperparameter which impacts the output 
division of gesture and non-gesture frames.  

The beginning of a movement represents something about few hundreds milliseconds, 
but it depends on the human subject speed and other factors, that is why I tweaked this 
interval to include more than only one frame for each label.  

Thus, I do not think that this algorithm is the best way to measure if a frame is a 
start/end of a movement or not, but we didn’t have any more information which could let 
me do a deeper analysis.  

Samples equalization 

During the first runs of our segmentation algorithm, we had an unexpected amazing 
accuracy of 94% good predictions of our software about each frame label. When looking to 
the training and validation loss during training, they seemed to converge which also is a 
good point. 

 

Figure 33. Training and validation loss of the model training with 
raw data 
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But such a success for a first try? I was very sceptic and my doubts confirmed when I 
took a look deeper into the results and the confusion matrix. 

The confusion matrix is a 4-number matrix including true/false positives and true/false 
negatives. In this case I could see that every frame that was not a movement start/end was 
well labeled as “not a gesture frame” (true negatives), but every frame that actually was a 
movement start/end one (true positives) was mislabeled also as “not a gesture frame”.  

In fact, the algorithm just learned to output “not a gesture frame” for 100% of the 
frames, and as we only had 6% gesture frames it could still reach a 94% accuracy.  

 

 

The first solution to this problem has been to randomly duplicate the gesture 
movement frames in order to equalize the division of the whole sample set, thus avoiding 
our model to look for a unique answer to output each time. 

 We’ve been able to get much more consistent data with this approach by equalizing to 
50% of non-gesture data and 50% gesture, but we had to duplicate a lot the few amount of 
gestures we had compared to the number of “idle” frames.  

 

 

Figure 34. Frame labels repartition ("gesture" 
representing the movement start/end frames) 
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The fact that this duplicity gets the dataset further from a real-conditions data 
representation can be a problem which impacts the performance of the training and thus 
the whole system. Such a duplication could for instance leads the model to memorize the 
data and thus to overfit its predictions in a way.  

Through searches and discussions with Dhruva and Francisco, the way to reduce this 
approach bad impact has been to oppositely remove some of the “idle” frames which would 
have the same effect on the equalization while having a lot less to duplicate data.  

One could consider this technique as a loss of data, but as our model goal is to predict 
“gesture frames” more than the opposite, it should not affect the algorithm learning in a 
negative way. 

The results then obtained on the training and validation loss with equalized samples 
fed into the algorithm reached a 39% movement detection accuracy14 and an 84% overall 
accuracy15 (accuracies computed by testing the trained model on a test set including around 
30,000 unequalized frames). 

When at this point I added my smoothing algorithm based on a Savitzky-Golay filter 
(see Data smoothing), the performance went down for unknown reasons. See Figure 37. 

 

 
14 The movement detection accuracy is the number of well detected movement frames divided by the total 
number of movement frames. 
15 The overall accuracy represents how many good predictions were made by the model in total on the tested 
set. In this particular case, this value can be misleading as it is computed on the validation set which contains 
lots more “idle frames” than movement ones. 

Figure 35. Frame labels repartition after the sample 
equalization 
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While I was expecting the data smoothing to simplify the data without losing useful 
value, simplifying thus the task for the model to find good correlations and do correct 
predictions, it actually decreased in practice the performances of the model. When I asked 
Dhruva about this point, he was not able to give me an answer as he’d also expected the 
smoothing to increase the system accuracy. 

He advised to continue the work on the data and the predictive model as it was an 
early stage of it, and to look deeper in the smoothing process later if I had time and this 
anomaly still appeared. 

  

Figure 37. Training and validation loss of the model training with 
equalized data 

Figure 36. Training and validation loss of the model training with 
smoothed equalized data 
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Final system 

Towards the end of my internship, after Auguste made lots of improvements for the 
model based on Dhruva’s advice, we ended up with a well-prepared dataset and a model 
which seemed to produce pretty good results. 

 The system structure (see Figure 38 on next page) consists in 6 consecutives neural 
layers: 

- The input layer is made of the 99 body joints coordinates fed into the algorithm. In 
fact, as we are using LSTMs16 the input layer is not just one skeleton frame but a 
batch of the actual tested frame and the 9 previous ones with their joints 
coordinates (not represented on Figure 37 for reasons of simplification). 

- A first LSTM layer which takes the inputted batch of frames and outputs a same 
shape result to a second LSTM. The use of LSTMs instead of regular neural 
networks allows the system to benefit from their internal feedback with memory 
which seemed us a good choice because the sequential form our data, every joints 
coordinates being the continuation of previous ones. We used LSTMs with 160 
hidden nodes (best hyperparameter found during the tuning) and batches of 10 
frames. 

- The second LSTM output is fed into a classic dense neuronal layer of also 160 
neurons. 

- A second dense layer takes the output of the previous layer, this one only contains 
2 neurons acting as a feature extractor17.  

- The final output node is then passed through an argmax function which keeps the 
max value of the inputs, and in a softmax activation function, a common way to 
return a probability distribution in a classification problem. 

The outputted result can then be used as the probability of each frame to be a 
movement start/end one, or classified using a probability threshold to consider the frame as 
a positive result. 

  

 
16 Long short-term memory is a type of recurrent neural networks which are neural networks with feedback 
connections, able to take sequences of sample instead of one sample at a time with classical neural networks, 
enabling memory mechanism very relevant in our case of continuous skeleton coordinates frames. 
17 Feature extraction is a way to reduce the dimension of data, it consists in building derived values (called 
“features”) intended to reflect the inputted information in a smaller dimension, facilitating the learning and 
generalization process. 
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Figure 38. Basic diagram of the final gesture segmentation predictive system 
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Our model shown at first pretty good results, predicting most of the movement frames 
with at worst a bit of delay or marking excess (marking more frame as movement one 
around the label than expected) which can be a logic result : a movement beginning/ending 
does not last exactly one or two frames as labeled (see Movement detection interval). 

 

  

This comparison between gesture predictions and labels is the one we first looked at, 
and it seems to confirm that our model is working as expected. When looking at the training 
and validation losses, they also seem to converge together which is usually a sign of a good 
generalization ability (see Figure 41). 

 

Figure 39. Example sample of gesture frames predictions for a 
random dataset video 

Figure 40. Corresponding sample of gesture frames labels 
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Everything seemed to be alright but then I looked into the algorithm which splits the 
dataset into validation and training set, and something looked wrong. We suddenly saw that 
when Auguste did a modification to this algorithm to limit its computer memory impact 
(which was saturated crashing the process) early in the project, he introduced a coding 
mistake which led to merging some of the training data in the validation data. 

The validation loss is an indicator for the model of being able to generalize and do 
good predictions on data out of the training set, the validation set intends to be isolated and 
unique in order to evaluate the model on data he could not train with, avoiding 
memorization of each training set sample label. This error thus compromised this principle. 

When we realized this impactful error, I corrected it by making sure that the validation 
set would not contain any video or even any same human subject from the training set, 
which intends to avoid model overfitting. 

When we then ran a training of the model with the corrected dataset, it appeared that 
our results were not as good as expected. 

 

Figure 41. Training and validation loss of final algorithm training with 
smoothed data 
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As you can see on Figure 42, the training loss converges to a very low point which is 
supposed to be a sign that the algorithm manage to find a good correlation between given 
input and expected output. The problem is that the validation loss does not converge 
anymore when no sample of the training set is included in the validation one; which means 
that the model is overfitting our training data and does not manage very well to generalize 
its “decision-making strategy” to detect movement frames with a good accuracy. 

On the internship end, time was missing to do so, but I believe that we could have 
made some improvements to avoid this problem and reach usable results. 

  

Figure 42. Training and validation loss of final algorithm after validation set 
split correction 
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Ways of improving 

The final can be improved in many ways as we did not have enough time to explore 
every ideas and improvement corrections we thought about. Some of them would consist in: 

- Increase the data diversity by generating noised duplicates for instance, increasing 
thus the dataset size. 

- Expend the dataset by finding a way to generate the “.frames” files which would 
allow to add 200+ labeled videos to the dataset. 

- Change the labels form with for instance a “movement score” instead of a simple 
“movement end” true/false value. 

- Differentiate each joint movements by implementing a specific recognition model 
for each, and use the EGGNOG included labels descriptions to train each model 
with its corresponding movements. 

- Do a more precise hyperparameters analysis and tuning, we couldn’t try everything 
we had in mind as it demands a lot of computation power and training time when 
it comes to heavy layers. 

- Preprocess some of the training work by adding new useful considered features, 
based on the raw coordinates. For instance, we could compute each body joint 
speed/acceleration and add it to the inputs. 

- Convert the dataset coordinates and labels to an absolute form which could be 
summed with other converted datasets to increase the total size in a significant 
way, as increasing the dataset diversity should lead to a more generalizable system 
decision strategy. 

- Check closer to the misrecognized frames looking for correlations between 
outputted errors and inputted data in order to focus on the model flaws and 
correct them. 

 

Various improvements – and in particular the fact that there was a mistake in the 
training/validation split algorithm which made the model overfitting – were brought to light 
by looking at our results through the visualization software that I wrote. 
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Visualization software  

Software conception 
 

While working on the model there was several times where we struggled to analyze its 
results, it wasn’t very convenient to compare the dataset given labels and our model 
predictions in a chart without the video of the corresponding movements. 

I thus came up with the idea of a visualization software, to see simultaneously the 
videos and the data. I used C++ which is a fast and compiled language very powerful and 
friendly when powered by Qt. It lets you quickly implement working User Interfaces (UIs) 
and portable softwares, with full access to the Operating System (OS) native libraries. 

 

 

I realized the interfaces with QML Quick, a feature of Qt that I knew by name and that 
I’ve been wanting to try since a few years. It is very convenient way to implement quick and 
portable GUIs, and simple of use as it’s more a markup language like HTML-CSS18 than a 
classic programming style. 

 
18 Hyper-Text Markup Language (HTML) is a simple web markup language used today for every website 
structuring.  
Cascade Style Sheets (CSS) is the language used to style (color, positioning…) HTML websites 

Figure 43. C++ logo Figure 44. Qt library logo 
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I decided to keep the computation in Python scripts as I already did most of the work 
needed during the data preparation. The software would just use those Python scripts to 
generate 2 JSON19 files (the EGGNOG labels, and our model predictions) and show them 
along the video.  

I also added features like speed acceleration/deceleration or frame-by-frame to 
explore our results in a more precise way. 

Results and interpretations 

As we can see on Figure 45 (predictions made on a test video which hasn’t been used 
during training, avoiding thus overfitted results), the results are not very accurate and we 
get a much more meaningful insight on our model predictions. 

I could also spot certain videos with incredibly good results which proven then to be 
overfitted; and we’ve been able to significantly improve our predictive model thanks to that 
tool. 

Another good improvement could be found by adding a visualization of the skeleton 
data, like a 3D representation of each joint coordinate according to the current video 
location; it could allow to see whenever there are outliers or errors in the data used as input 
to our system. 

 
19 JavaScript Object Notation (JSON) is a data format derived from JavaScript 

Figure 45. Example screenshot of the visualization software 
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Conclusion 

Our whole predictive system needs thus further work to be really usable in a 
production environment, but it has good bases to do so. The objective of this internship was 
to get into machine learning and learn about artificial intelligence while trying to advance 
state-of-the-art in this field of study, and I am very happy with what I accomplished. 

I learned a lot about Python especially with ML and data science libraries such as 
Pandas, NumPy and Tensorflow. I thus discovered those very useful features and will 
probably use them in most of my future Python projects, as well as Qt last versions and QML 
Quick for UI design which allows huge time savings. 

The lab environment was really stimulating and challenging as I had to work with fields 
of study I wasn’t used to but which were also exciting. I’m learned a lot about machine 
learning and artificial intelligence overall, and I’m very excited to use those new skills again 
on new projects. 

It was nice to work in some kind of freedom while still having a trace and advice from 
the lab team. I had a great support from Dhruva when it came to Machine Learning and 
topics that I didn’t mastered well, and Francisco was also really helpful and careful to 
everything that I needed. I thus want to thanks them again and every other member of the 
lab for their support and kindness towards me. 
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 Appendices 

1. Raw data kept columns header construction 

Figure 46. Data header definition, unnecessary columns dropping 
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I firstly computed a header for the data, which includes a title for each column of the 
CSV20/TSV21 file. This has been made by extracting the body joints names from a row of a 
random skeleton file and use them to title each file column, by executing the following 
replacement regex22: 

Search: 

([A-z]+)\s*\w+\s+[\-0-9\.]+\s+[\-0-9\.]+\s+[\-0-9\.]+\s+[\-0-9\.]+\s+[\-0-
9\.]+\s+[\-0-9\.]+\s+[\-0-9\.]+\s+ 

Replace: 

$1\t$1Status\t$1LocX\t$1LocY\t$1LocZ\t$1OrW\t$1OrX\t$1OrY\t$1OrZ\t 

This header allows me to then create a Python dictionary of those columns, keeping 
their indexes for further use and removing the columns I don’t need/want. Those columns 
are then used by the skeleton-loading function (see Figure 34) to skip the unwanted ones. 

 

 

  

 
20 Comma Separated Values 
21 Tab Separated Values 
22 A regular expression or regex is a character sequence which defines a search pattern, usually used by string-
search algorithms for operations such as “find” or “find and replace” 

Figure 47. Sample of columns from 7 to 18 from a random skeleton file 

Figure 48. Example usage of the computed columns 
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2. Data loading functions 
 

 

 

I use the Python library Pandas to extract the data from the CSV files, and keep only 
the usable data columns by passing the previous computed columns header. The timestamp 
files (“.frames” files) are clean and do not need such a filtering, so we can load and return 
them directly. 

The third function is used during the dataset creation (see Figure 35) to make testing 
functions used to map each skeleton frame to its label “Start/end frame” or “Not a start/end 
frame”. 

  

Figure 49. Data extracting functions definition 
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3. Dataset array creation 
 

 

This is the main function which uses the previous ones to return the dataset in a usable 
Python dictionary form. This function iterates over the labels file and: 

- retains in an array “eFrames” each movement end frame number of a video (and 
not the movements start, as each movement end corresponds to the next 
movement start so I avoid redundancy)  

- gets the corresponding timestamps (which can be in “_RGB.frames” or 
“_Video.frames” files), return an error if not found to continue to next file 

- creates tests functions to map the frames to their corresponding label using the 
given time interval parameter used to control how many frames are marked by 
each label 

Figure 50. Dataset array creation function definition 
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- stores the results in an array of the frames and their corresponding labels, indexed 
in the data dictionary by current the file name 

- empty its movements end list “eFrames” and continues to iterate on the next 
labels to get next video movements 

 

While developing this algorithm, I discovered the map function of Python that lets you 
run a function on a whole list by replacing each value by the results of the passed function 
with the value as a parameter.  

It is a very useful feature which can be used in many ways for data filtering or 
transformation, but I use it here (in a convoluted way maybe) to test each skeleton frame 
with a different function defined on-the-fly with the “eFrames” movement end frame list. 
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